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ABSTRACT

The prediction of critical speeds and forced response of

active magnetic bearing turbomachinery is of great interest due

to the increased use of this new and promising technology.

Calculating the system undamped critical speeds and forced

response is important to all those who are involved in the design

of the active magnetic bearing system. This paper is the first

part of a two part paper which presents the theory and results of

an investigation into the influence of sensor location on the

undamped critical speeds and forced response of the rotor and

bearing system.

Part I of this paper concentrates on an extended Jeffcott

model which was used as an approximate solution to a more

accurate transfer matrix procedure. Theory behind a

two-degree-of-freedom extended Jeffcott model will be presented.

Results of the natural frequency calculation will be shown

followed by the results of the forced response calculation. The

system response was predicted for two types of forcing. A

constant magnitude excitation with a wide frequency variation was

applied at the bearings as one forcing function. The normal

unbalance force at midspan was the second source of excitation.

The results of this extended Jeffcott solution gives useful

design guidance for the influence of the first and third modes of

a symmetric rotor system.

NOMENCLATURE

A shaft relative motion max amplitude for ist mode (cm)

a mass eccentricity of imbalance (cm)

B shaft relative motion max amplitude for 3rd mode (cm)

C ratio of bearing damping to shaft damping (dim)

C 1 damping of AMB (N-s/cm)
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C 2 damping of flexible shaft (N-s/cm)

F0 constant magnitude force applied to journal mass (N)

i square root of -i, complex variable (dim)

K ratio of bearing stiffness to shaft stiffness (dim)

K 1 stiffness of AMB (N/cm)

K 2 stiffness of flexible shaft (N/cm)

KII row i, column 1 of stiffness matrix in Jeffcott solution

KI2 row i, column 2 of stiffness matrix in Jeffcott solution

K21 row 2, column 1 of stiffness matrix in Jeffcott solution

K22 row 2, column 2 of stiffness matrix in Jeffcott solution

L bearing span (cm)

M ratio of bearing journal mass to rotor midspan mass (dim)

M 1 equivalent bearing journal mass (kg)

M 2 equivalent rotor midspan mass (kg)

R shaft absolute displacement (cm)

X shaft maximum displacement in the X-direction (cm)

r I shaft deflection at bearing journal location (cm)

r 2 shaft deflection at midspan mass (cm)

rs shaft deflection at AMB sensor location (cm)

z axial distance along rotor (cm)

z s axial distance to AMB sensor (cm)

e sensor relative position to midspan (dim)

normalized shaft motion at sensor location (dim)

angular velocity of shaft (rad/s)

0 natural frequency normalized to rigid bearing

critical speed (dim)
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INTRODUCTION

The evaluation of critical speeds and forced response for

turbomachinery with fluid-film and antifriction bearings is now

standard design practice for many manufacturers. The standard

transfer matrix solution technique (Myklestad, 1944; Prohl, 1945)

is the current industry standard for evaluation of rotor response

and undamped critical speeds. More recently interest in improved

forced response and stability of high pressure compressors and

pumps have forced designers to consider active magnetic bearings

(AMBs) for either retrofit or new machinery application. The

initial application of magnetic bearings to centrifugal

compressor was evaluated using standard critical speed codes

without consideration for sensor location (Hustak et al., 1987;

Schoeneck and Hustak, 1987). The comparisons of predicted

response and critical speed placement to actual test and field

results (Hustak et al., 1987; Schoeneck and Hustak, 1987; Kirk

et al., 1988) have drawn attention to possible improvements in

the analytical representation of the magnetic bearings.

This paper is the first of a two part paper which presents

an evaluation of the effect of sensor location on the predicted

undamped critical speeds and forced response of turbomachinery.
This paper concentrates on the solution of a

two-degree-of-freedom model developed by extending the original

Jeffcott model to include bearing stiffness and damping, journal

mass and accounting for non-colocation of bearing and sensor.

The second paper will discuss the evaluation of a modified

transfer matrix solution and will present results of a typical

rotor bearing system analysis.

The extended Jeffcott model will be considered to have

sensors either inboard or outboard of the bearing centerline.

The system response is calculated for two different types of

forcing functions. The first excitation force is the usual

unbalance located at the midspan mass. The second is a constant

magnitude excitation applied at the journal mass while the

excitation frequency is varied. The second type of rotor

excitation is available in an actual active magnetic bearinj and

rotor system.

PRINCIPLE OF ACTIVE MAGNETIC BEARING OPERATION

The AMB is composed of two major mechanical parts, the rotor

and the stator. Both are made of ferromagnetic laminations. The

rotor laminations are placed on the machine shaft at the selected
journal location. The stator laminations are slotted and include

windings to provide the magnetic levitation and position control.

For each degree of freedom, two electromagnets are required since

they operate by attraction only. Figure 1 shows the stator
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lamination construction of a radial bearing and sensor with the

rotor lamination sleeve in the background.

Rotor position is monitored by sensors and this signal is

compared to a nominal reference signal with a closed loop

controller which supplies a command signal to the power

amplifiers. These amplifiers provide power to the electromagnets

to resist rotor movement from the nominal position. The design

of the control loop gives the option to select the effective

bearing stiffness and damping. The details of this design

procedure are not the subject of this paper but the values of

stiffness and damping must be carefully selected to give the

rotor system the desired optimum dynamic response and stability.

Before power is applied to the bearings, the rotor is

supported on two auxiliary ball bearings located in close

proximity to the AMB. The clearance between the rotor and the

inner race of the ball bearing is selected to prevent rotor

contact with the AMB pole pieces or the internal seals of the

compressor while the rotor is at rest or during an emergency

shutdown. When power is applied to the electronic controls, the

electromagnets levitate the rotor in the magnetic field and

rotation by the driving source, such as a motor or turbine, can

be started. The sensors and control system regulate the strength

and direction of the magnetic fields to maintain exact rotor

position by continually adjusting to the changing forces on the
rotor. Should both the main and redundant features of the AMB

fail simultaneously, the auxiliary bearing and rotor system are

designed to permit safe deceleration.

When the turbomachine is running the rotor shaft may take a

dynamic mode shape such that the displacement at the sensor

location may not be the same as the magnetic bearing centerline

displacement. The command signal is taken from the sensor

location but the actuator applies the force through the coil such

that the average force acts at the bearing centerline. This

variation in command signal and actuator location is unique to

the active magnetic bearings and may be used to the advantage of

the designer to help place critical speeds. The performance of

the AMB supported machinery may be more accurately predicted if

proper account is taken for sensor location. This requires a

modified, iterative solution strategy for current standard

state-of-the-art computer codes for critical speeds, forced

response, and stability. To initially evaluate the influence of

the sensor placement, a modified extended Jeffcott rotor model

will be developed with an assumed deformation to study the

sensitivity of rotor bending modes and response to sensor
location.
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AMB EXTENDED JEFFCOTT MODEL

The original rotor model developed by H. H. Jeffcott consists

of a single mass on a flexible shaft supported by rigid bearings.

Kirk and Gunter (1972) modified this model to study the effect of

support flexibility and damping on the synchronous response of

the single mass flexible rotor• This paper extends the original

Jeffcott model by assuming the existence of AMB supports. The

extended model adds journal mass, bearing stiffness and damping

at bearing locations, and assumes rigid bearing pedestals. The

AMB extended Jeffcott model is shown in Figure 2.

To develop the extended Jeffcott model the disk mass plus the

two center quarters of the shaft mass are lumped at midspan, M 2.

The journal and shaft end quarter masses are lumped at bearing

locations and modeled as MI/2. The model is assumed to be
symmetric; therefore, it can be simplified to a

two-degree-of-freedom (2DOF) system as shown in Figure 3. An

unbalance force is shown at M_, and a constant magnitude
excitation force is shown acting on M I.

The equations of motion (EOM) for the 2DOF system are written
as follows:

M2r 2 = M2_2aei_t - C 2(r2-r I) - K 2(r2-r I) [i]

Mlr I = F_e i_t + C2(r2-rl) + K2(r2-rl) - Clr s - Klr s [2]

In equations [i] and [2] the deflections at M 1 and M 2 are defined

as r I and r 2 respectively. The deflection at the AMB sensor

location is defined as r s. It is indicated by the EOM that the
bearing forces are proportional to the sensor location

deflection - not the bearing location deflection, as would be the

case with conventional fluid-film or antifriction bearings.

The sensor location deflection is calculated after assuming

mode shapes of a half-period of a sine wave. These mode shapes,

modeling the first and third modes, are shown in Figure 4. Using

Figure 4, the equation for the sensor location deflection is
written as follows:

rs = r I + (r 2 - rl) sin(_e/2) [3]

where,

= Zs/(L/2). [4]
Equation [4] defines the value _ as the ratio between the sensor

offset and the shaft half-span.
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After substitution of equation [3], equations [i] and [2]
can be written in matrix form as follows:

o1 r1 +telol[rl]LOM2JL_'_.J LOc2J_2
+ [KI°l[rl]r'+eit

0 K2J r 2 LM2_2aei_tJ

[5]

By assuming a solution of r = Re i_t,

can be written in the following form:

the matrix equation [5]

K21 K22J R2 M2_2

where,

Ell = (El(l-E) + K 2 - MI_2 ) + i_( C 2 + CI(I-_) )

KI2 = ( KIB - K 2 ) + i_( CIB - C 2 )

K21 = -K 1 - iwC 2

K22 = ( K 2 - M2_2 ) + i_C 2

B = sin _e/2.

[6]

INFLUENCE OF SENSOR LOCATION ON UNDAMPED NATURAL FREQUENCY

The influence of sensor location on the critical speeds of

the AMB rotor system is initially investigated by calculating the

natural frequencies of the extended Jeffcott Model. The sensor

location is varied inboard and outboard of the bearing centerline

by as much as 20% of half-span.

Eliminating damping terms, C 1 and C2, from equation [6]; and

solving for the determinant of the resulting stiffness matrix,

results in the following equation for the natural frequencies:

K 1 (MI+M 2 )

_4 _ (I - 8)-- + K2_2 +

M 1 M 1 M 2

K 1 K 2

M 1 M 2

- 0. [73

Equation [7] can be written in the following non-dimens onal

form:
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K K

02 _ (i - - (i + K(I - 8))0 + - = 0

M M

where,

M = MI/M 2

K = KI/K 2

= _2/(K2/M2)

[8:]

Results from Natural Frequency Analysis of AMB Extended Jeffcott
Model

To show how sensor location influences the first and third

natural frequencies of various geometries of the extended

Jeffcott model, the solution of equation [8] was graphed for

alpha values ranging from -2.0 to 2.0. This exemplifies sensor

separations of 20% of half-span both inboard and outboard of the

bearing centerline. The results are shown for mass ratios, M, of

1.0 (Figure 5), and 0.25 (Figure 6). The stiffness ratio, K,

varies from 0.i up to i0 in each analysis.

The results are similar for both mass ratios. The

sensitivity to non-colocation of bearing and sensor is increased

in two different situations. An increase in sensitivity occurs

as stiffness ratios increase. This is attributed to the fact

that when the bearing stiffness increases relative to the shaft

stiffness there is more bending energy in the rotor. This causes

a greater difference between bearing and sensor deflection at

higher stiffness ratios. The sensitivity also increases as

sensor-bearing separation increases. This also results in

greater differences between bearing and sensor deflections.

The direction in which the criticals move depends on whether

the sensor, at an inboard or outboard location, gives more or

less response than the normal bearing centerline. For the first

mode, the inboard sensors have a greater deflection than the

bearings; therefore, the critical increases due to higher bearing
forces. Outboard sensors detect less deflection than at the

bearing, thus decreasing bearing forces and lowering the critical

frequency. The opposite occurs at the third mode. The inboard

sensors detect less deflection, while the outboard sensors detect

more deflection than at the bearing centerline. This lowers the

third critical frequency for inboard sensors and raises it for
outboard sensors.
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INFLUENCE OF SENSOR LOCATION ON FORCED RESPONSE SOLUTION

The response is calculated for two forms of excitation

applied independently to the AMB extended Jeffcott model

equations. In order to calculate the response, the matrix

equation [6] is solved for R 1 and R 2 using Cramer's Rule (Anton,
1984). The solution has the following form:

F¢ K22 - KI2 ( M2a_2 )

R 1 = [9]

KII K22 - KI2 K21

KII ( M2a_2 ) - F¢ K21

R 2 = [i0]

KII K22 - KI2 K21

The resulting response is complex, thus there exists an amplitude

and a phase angle associated with both R 1 and R_. The phase
angles can be obtained from the following equatlons:

81 = cos-i
Is real (R 1 )

qrt[(real(Rl ) )2 + (imag(Rl) }2]

[ii]

IS real (R2) ]
82 = cos -I [12 ]

qrt[{real(R2 ) )2 + (imag(R2) }2]

It must be noted at this point that the unbalance force and

the constant excitation force are never applied at the same time

as this introduces additional complexities not accounted for by

the Jeffcott model. Physically, the constant magnitude excitation

force is applied in one plane only, therefore the motion of the

masses is in one plane only. However, for computational and

analytical simplicity, it will be assumed that the constant

magnitude excitation force acts in two mutually perpendicular

planes in a manner similar to the unbalance force. The correct

solution for the constant magnitude excitation force plane, is

then, simply the real part of the deflections R 1 and R 2 shown

above. However, since the motion is assumed to be circular, the

maximum amplitudes in the X-direction, X 1 and X2, will be the

same as R 1 and R2, for masses M 1 and M 2. Similarly, the phase

angles calculated from R 1 and R 2 are also valid for motion in one

plane. Thus, regardless of whether an unbalance force or a

constant magnitude excitation force is applied, the solution

technique and the solution itself will remain the same.

547



Results from Forced Response Analysis of AMB Extended Jeffcott
Model

The results that are to be shown are of the bearing journal

response. Similar results occur for the mid-span mass response;

therefore, they are omitted.

The response amplitude at the bearing location is plotted

versus shaft frequency in Figure 7. The excitation causing this

response is due to an imbalance at mid-span resulting from an

eccentricity of 0.076 mm at M 2. In this case M = 1.0, K = 2.0,
and the bearing damping is set to 0.283 N-s/mm. The shaft

damping is assumed negligible. The value of e, being varied as

in the critical speed solution, ranges from -0.2 to 0.2.

In Figure 7 it can be seen that the first mode peak resonance

frequencies increase from the colocation case, _ = O, when

inboard sensors, e > 0, are used. The peak frequencies are shown

to decrease with outboard sensor, e < 0, use. For the third

mode, the peak frequencies are lower with inboard sensor use, and

raised for outboard sensor use. These results are very
consistent with the results shown from the influence of sensor

location on natural frequencies. The same reasoning can be used

to explain both sets of results.

The results from the case using a constant magnitude

excitation at the bearing location shows the same tendencies as

the unbalance case. Shown in Figure 8 are the results of the

bearing location excitation case.

CONCLUSIONS

This preliminary investigation into the effect of sensor

location on the rotor dynamic performance of AMB turbomachinery

gives very useful results. The natural frequency and forced

response results from the AMB extended Jeffcott model could give

the rotor-bearing system designer greater confidence in the

proper selection of sensor location.

From the test run of the AMB extended Jeffcott model the

following specific conclusions were made:

i. For inboard sensors, as the sensor is moved away from

the bearing, the first mode critical frequency goes higher. For

outboard sensors, as the sensor is moved away from the bearing,

the first mode critical frequency goes lower.

2. For inboard sensors, as the sensor is moved away from

the bearing the third mode critical frequency decreases. However

for outboard sensors, as the sensor is moved away from the
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bearing the third mode critical frequency increases.

3. The vibrational characteristics of the two mass rotor

system did not vary when a constant excitation force was used

instead of a rotating unbalance.

4. The effect of the sensor position on the critical

frequencies was considerable, when the stiffness ratio was high.

5. Higher mass ratios led to increased sensitivity of third

mode critical frequency to changing sensor positions. Vice

versa, low mass rations led to increased damping effects in the

third mode, making the rotor relatively insensitive to changing
sensor locations.

RECOMMENDATIONS

The AMB extended Jeffcott model is a simple but

very useful approximation of a much more complex rotor-bearing

system. The following recommendations are made for

extending the current approximate analysis:

i. The addition of pedestal stiffness and damping should be
included in this model.

2. A method for accounting for sensor location should be
included in the transfer matrix codes that are used to calculate

forced response.

3. This research should be extended to a stability analysis

in order to improve prediction capability for AMB turbomachinery.

4. Experimental test results must be generated for

comparison and verification of the analyses developed.
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